Topological and Symbolic Dynamics for Axiom a Diffeomorphisms with Holes
نویسنده
چکیده
We consider an Axiom A diffeomorphism and the invariant set of orbits which never falls into a fixed hole. We study various aspects of the complexity of the symbolic representation of Ω. Our main result are that each topologically transitive component of Ω is coded and that typically Ω is of finite type.
منابع مشابه
Symbolic Dynamics for Axiom a Diffeomorphisms with Holes
We consider an Axiom A diffeomorphism and the invariant set of orbits which never falls into a fixed hole. We study various aspects of the complexity of the symbolic representation of Ω. Our main result are that each topologically transitive component of Ω is coded and that typically Ω is of finite type.
متن کاملTopological and Symbolic Dynamics for Hyperbolic Systems with Holes
We consider an Axiom A diffeomorphism or a Markov map of an interval and the invariant set Ω∗ of orbits which never falls into a fixed hole. We study various aspects of the symbolic representation of Ω∗ and of its nonwandering set Ω. Our results are on the cardinality of the set of topologically transitive components of Ω and their structure. We also prove that Ω∗ is generically a subshift of f...
متن کاملDiffeomorphisms with Persistency
The C1 interior of the set of all diffeomorphisms satisfying Lewowicz’s persistency is characterized as the set of all diffeomorphisms satisfying Axiom A and the strong transversality condition. In [5], Lewowicz introduced a notion of persistency for a homeomorphism of a compact metric space X , and it is remarked that persistence is a weaker property than topological stability when X is a mani...
متن کاملThe Entropy Conjecture for Diffeomorphisms Away from Tangencies
We prove that every C1 diffeomorphism away from homoclinic tangencies is entropy expansive, with locally uniform expansivity constant. Consequently, such diffeomorphisms satisfy Shub’s entropy conjecture: the entropy is bounded from below by the spectral radius in homology. Moreover, they admit principal symbolic extensions, and the topological entropy and metrical entropy vary continuously wit...
متن کاملTHE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF AXIOM IN L-TOPOLOGICAL SPACES
In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived
متن کامل